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THE SAMPLING THEOREM FOR THE IMAGE OBTAINED BY A CIRCULAR 

APERTURJ3 AND ITS APPLICATIONS TO NUMERICAL CALCULATION 

OF AMPLITUDE, INTENSITY AND THEIR FOURIER TRANSFORMS 

WITH ANALYTICAL EXPRESSION OF RESPONSE ~ C T I O N S  ('1 

(2) Hideya Gam0 

ABSTRACT. The sampling theorem f o r  the amplitude 
of waves by a c i r c u l a r  aper ture  is derived; namely, t h e  
complex amplitude F(p, $) i n  t h e  image plane i s  expressed 
as 

where a is  aperture  constant,  p,$ po la r  coordinates,  
k = 27r/X and X wavelength, Xns sth zero of the  Bessel 

function J (x). The sampling functions (Cns) s a t i s f y  

t h e  orthogonal r e l a t i o n  
n 

and Cns is-.&zty upon a sampling circle of radius  X 

and i s  zero upon the  o ther  sampling circles of t h e  same 
order (Figure 1). 
is obtained by t h e  in t eg ra t ion  with angle $ of t h e  complex 
amplitude at a sampling c i r c l e  mult ipl ied by exp(-in$) . 
A t  each sampling circle of order  zero a sampling coeff i - '  
c i en t  is obtained,and a t  each sampling circle of 

/ka ns  

The sampling coe f f i c i en t  Fn(Xns/ka) 

* 
Numbers i n  t h e  margin ind ica t e  pagination i n  the  o r ig ina l  foreign t ex t .  

("Part of t he  contents was published i n  "Kagaku", Dec., 1956. 

(2)Department of Phys.ics , University of Tokyo. 
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non-zero order  two sampling coe f f i c i en t s  Fn(Ans/ka) and 

F ( A  /ka) are obtained. There i s  an important r e l a t i o n  

between t h e  above sampling coefficient;  and the  coe f f i c i en t  
of  Fourier-Bessel expansion of  t he  pup i l  function; 

-n ns  

Kas = - l zFm(An, /ka) /  (i)" (kaJa'(A.,)]t . ( 5 )  

and t h e  pup i l  function f ( r ,  e) is  expressed as 

The number of sampling coe f f i c i en t s  whose sampling 
circles are included wi th in  a circle of area S of t h e  
image, namely, t he  number of degrees of freedom, is 
estimated as ma2S/X2 by considering the  d i s t r i b u t i o n  of 
zeros  of J (x) and by us2ng known r e s u l t s  f o r  rectan- 
gu lar  a p e r h r e s  . 

That t h e  Fourier transform of i n t e n s i t y  d is t r ibu-  
t i o n  of an image by a c i r c u l a r  aper ture  a vanishes 
outs ide t h e  region of a c i r c l e  of radius  201 i n  various 
degrees of coherence of  i l lumina t ion ,  is shown by con- 
s ider ing  t h a t  t h e  i n t e n s i t y  i s  described by a series 

, of products CnsCmt*sand Fourier transforms of CnsCmt* 

vanish outs ide the  circle mentioned above, as is  
c l a r i f i e d  by means of convolution i n t e g r a l s  o r  analy- 
t i c a l l y  i n  Appendix 2. 
of t he  i n t e n s i t y  d i s t r i b u t i o n  mentioned above, t he  sampl- 
i n g  theorem f o r  i n t e n s i t y  d i s t r i b u t i o n  is  obtained by 
put t ing  2a i n  place of a i n t o  Equations (1) - (3).  The 
Fourier transform of i n t e n s i t y  d i s t r i b u t i o n  is  obtained 
by (5) and (6) where a i s  replaced by 2a,  and the  
response function may be  calculated by these equations 
from the  i n t e n s i t y  d i s t r i b u t i o n  obtained ana ly t i ca l ly  
o r  experimentally. 

Because of t h e  l imited spectrum 

These sampling theorems may be  used f o r  interpola-  
t i o n  of amplitudes and i n t e n s i t i e s .  By taking t h e  w e l l  
known A i r y  f i g u r e  a t  sharp focus as an example,it is  
shown t h a t  the sampling theorem f o r  i n t e n s i t y  w i l l  b e  
prefer red  t o  t h e  sampling f o r  amplitude because of t h e  
higher  accuracy of the  former. The r e l a t i o n  between 
t h e  c i r c l e  polynomial expansion due t o  Zernike, Nijboer 
and Hienhuis and the Fourier-Bessel expansion of the 
pup i l  funct ion i s  considered as a preliminary t o  numer- 
i c a l  ca lcu la t ion  by sampling theorems. 
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The response function of a p u p i l  w i t h  small 
aber ra t ions  may be  expressed ana ly t i ca l ly  by t h e  
Fourier transform of ana ly t i ca l  expression f o r  inten- 
s i t y  d i s t r i b u t i o n ,  and i n f i n i t e  response funct ions 
obtained i n  t h i s  paper, namely, t h e  method using (5) 
and ( 6 ) ,  t h e  one using Fourier transforms of CnsCmt* 

i n  Appendix 2,  and t h e  one t r e a t e d  i n  Appendix 3 
are discussed. The f i r s t  method w i l l  be  most conven- 
i e n t l y  used and be complemented by the  t h i r d  method, 
s ince  t h e  value of t he  response function at the  o r ig in  
which cannot b e  obtained accurately by t h e  f i r s t  
method is  e a s i l y  obtained by the  t h i r d  method. 

1. INTRODUCTION 

Most of t h e  o p t i c a l  images w e  treat are two-dimensional; t h e  grea t  

majority of them can be  obtained by a c i r c u l a r  aperture.  

dimensional theorems , there  are those which are t r e a t e d  by Blanc-Lapieree, 

Gabor, Toraldo d i  Francia, F e l l g e t l  and Linfoor [2]. ?!hey correspond t o  a 

square aperture;  t he  amplitude a t  each la t t ice  poin t  of t he  two-dimensional 

Among t h e  two- 

square la t t ice  is  taken as the  sampling value. 

t o  treat t h e  images by a c i r c u l a r  aper ture  wi th  t h i s  method. 

t h e  sampling values corresponding t o  t h e  square aper ture  which circumscribes 

t h e  c i r c u l a r  aper ture  under considerat ion need t o  be taken. 

such as t h e  f a c t  t h a t  t h e  sampling values are not  completely independent, 

and a l so ,  when the re  i s  axial symmetry t o  t h e  image, it is d i f f i c u l t  t o  see 

It is of course poss ib le  

For example, 

It has f a u l t s ,  

through. 

c i r c u l a r  aper ture  system be  derived. Since sampling theorems general ly  have 

meanings i n  t h e  in t e rpo la t ion  method, t h e  der iva t ion  of a sampling theorem 

f o r  an axial symmetric c i r c u l a r  aper ture  can b e  employed 'as an i n t e r p o l g t i o n .  

method f o r  ca lcu la t ion  of t h e  ana ly t i ca l  images of t he  Zernike, Nijboer,  and 

Nienhuis' 133 system with aberrat ions.  The sampling theorem f o r  t h e  i n t e n s i t y  

d i s t r i b u t i o n  discussed i n  2.2 can be  ac tua l ly  u t i l i z e d .  

t ab l e  of t h e  standard sampling func t ions  (Cns i n  t h e  t e x t ) ,  any i n t e n s i t y  

d i s t r i b u t i o n  f o r  t h e  given sampling value can b e  calculated by mul t ip l ica t ion  

and addition. 

Hence, i t  is  imperative tha t  a sampling theorem which b e s t  f i t s  t h e  

By construct ing a 
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Since the Fourier  transform of the s tandard . func t ions  can b e  c lose ly  

cor re la ted  w i t h - t h e  Fourier-Bessel expansion, the Fourier  transform can b e  

obtained by giving t h e  sampling values. 

cu la t ion  of Zernike, t he  response function can b e  obtained. It probably 

can b e  s a i d  t h a t  t h i s  method is  an ! a l t e rna t ive  f o r  t h e  convolution i n t e g r a l  

method by Hopkins, De [4]. Also, i f  t h e  a n a l y t i c a l  image of t h e  l i g h t  

source can b e  obtained by experiments, t h e  response funct ion can b e  derived 

by determining t h e  sampling value of t h e  image. 

i n t e n s i t y  is, also,  useful. f o r  arranging experimental data .  

By applying this method t o  the cal- 

The sampling theorem f o r  

W e  w i l l  consider t h e  degrees of freedom-of t h e  circular aper ture  image. 

This problem is  re l a t ed  t o  t h e  d i s t r i b u t i o n  of zeros  of t h e  Bessel function. 

I Although t h e  ca lcu la t ion-of  Bessel funct ions becomes necessary a t  seve ra l  

places ,  references are given f o r  t he  b a s i c  equations [SI.  I n  order  t o  

prove t h a t  t he  frequency band of the i n t e n s i t y  d i s t r i b u t i o n  i s  r e s t r i c t e d ,  

as ide  from t h e  d i r e c t  observation method, the  series expansion method is 

given i n  t h e  appendix. They were added s ince  they cannot b e  found i n  refer- 

ence books on Bessel funct ions,  and a l s o  i t  was  thought t h a t  they might b e  

use fu l  i n  the  fu ture .  

are clear without ge t t i ng  involved i n  discussions of t he  equations. 

It i s  hoped t h a t  t h e  physical  meanings of the  r e s u l t s  

2. SAMPLING THEOREMS 

2.1 (3) Sampling Theorems of t he  Amplitude 

Let t ing  01 be t h e  aper ture  constant i n  op t i c s ,  only those Fourier  com- 

ponents included i n  a circle of radius  a cont r ibu te  t o  t h e  image formation. 

a = s i n  0 ,  where 6 is  h a l f  of t he  angle of t h e  l i g h t  f l ux  en ter ing  t h e  pup i l  

from a pointon the  objec t  surface.  The Fourier component r e s t r i c t e d  i n  the  

(3)According t o  t h e  p r i v a t e  communication with D. Gabor, the sampling 
. theorem f o r  a c i r c u l a r  aper ture  w a s  given i n  t h e  Ri tch ie  Lecture (1952) 

which, however , is unpublished. 
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circle of radius  a is  expressed as f ( r , e ) .  

respec t ive ly ,  i n  polar  coordinates. f ( r ,8 )  is always zero f o r  r a and 

takes values o the r  than ze ro  f o r  r < a. 

Fourier series f o r  der iving the  sampling theorem f o r  a square aper ture ,  t h e  

Fourier-Bessel expansion i n  the  circle of a c i r c u l a r  aper ture  f ( r , 6 )  is  used. 

r ,8 are t h e  radius  and angle,  

I n  contrast '  t o  t h e  use of t h e  double /lo4 

The Fourier-Bessel function i s .  expressed by t h e  following equation: 

The expansion coe f f i c i en t  Kns is given by t h e  following orthogonal 

r e l a t ion .  

x exp ( - inn) J,, &r/u) rdrda ' 

X 

The orthogonal r e l a t i o n  is  obtained by t h e  Lommel i n t e g r a l  (Appendix 1). 
is  the sth zero-poin t  i n  t h e  Bessel funct ion of t h e  f i r s t  kind Jn(x) . n s  

L e t  us obtain the Fourier  transform of t he  pup i l  funct ion.f(r ,O) given by 

the  above Fourier-Bessel expansion. Needless t o  say, the Fourier  transform 

gives the  complex amplitude of t h e  waves on t h e  image. That is ,  the complex 

amplitude F(p,$) of the  image is 

x expCikprcos(8 -441 rdrde 

where k = 2 1 ~ / h ; ,  X is t h e  wavelength. 

g ra t ing  by terms, 
Subs t i tu t ing  (1) i n t o  (4) and in t e -  

. n  
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(cf. Appendix 1)- 
theorem form. 

standard funct ion f o r  t h e  expansion of  an image 

In the following ( 5 )  is  rearranged i n  t h e  sampling 

L e t  us f i r s t ;  def ine  t h e  following function CXB(p,+) as a 

~ -- 
The function becomes E on t h e  circle of radius  _ r = W k a ,  , and zero on the  

circle of radius  P=lat/ka belonging t o  the  same order n. ( see  Figure 1) e 

Among the  functions {C (p,t$) l 9  the  following orthogonal r e l a t i o n  holds,  ns 

(See t h e  end of Appendix 1, 2 f o r  t h e  proof.)  The proper t ies  of t h e  funct ion 

{Cns(p,+)) are common, t o  a c e r t a i n  ex ten t ,  t o  those  of the standard funct ion 

s i n  (kax - nn) s i n  (kay - mr)/(kaz - nn) (kay - mT) of a square aperture.  

The amplitude.F(p,+) of an image is expanded by the  above orthogonal 

function’ {Cns(p,+) 1,  and becomes 

_ -  - ~ - . 

The expanded coe f f i c i en t  Fn(Xis/kcr) is  given by: 

- - __ ____-  - d , 

---_I - -- 
-Th i s - i s -%&yawng  theorem f o r  t h e  

image by a c i r c u l a r  aperture.  

magnitude equal t o  t h a t  obtained by multiplying 5 e-(-in+) t o  t h e  amplitude 

of F(Xns/ku,+) on the  circle (sampling circle of rad ius  Xns/ku, and in tegra t -  

ing a l l  around with respect to  t h e  angle +. 

The expansion coe f f i c i en t  Fn(Xns/ka) has a 

These are our sampling values. 

C4)For a spec ia l  case w h e n - =  0,  t ha t  is when i t  is  ax ia l ly  symmetric, 
Kokura of Koana Lab. ,independently derived the  same r e s u l t  (unpublished). 
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The sampling values can be defined by.  the i n t e g r a l  form w i t h  respec t  

t o  cos m$, s i n  m$ [see (40)], Equation (8) can b e  derived from t h e  conven- 
t i o n a l  d e f i n i t i o n  of t h e  expansion coe f f i c i en t  (5) e 

A s  evident by .comparing t h e  sampling theorem (7) and Equation (5 )  

obtained by t h e  Fourier-Bessel expansion, the  following r e l a t i o n  exists 

between ' t h e  coe f f i c i en t  K 

value Fn(X 

of the Fourier-Bessel expansion and the sampling ns  
/ka) of t h e  sampling theorem: n s  

This is an important-equation which is used t o  obta in  the amplitude of t he  

Fourier transform - t h a t  is, t h e  pupi l  funct ion f ( r , 9 )  from t h e  given 

sampling value Fn(X 

sampling value of t h e  image F (Xns/ka) as follows, 

/kg)-.---The pup i l  funct ion f(r ,9)  is expressed by the  ns,, 

n 

Since the i n t e n s i t y  d i s t r i b u t i o n  of t h e  image' is equal  t o  t h e  square of t h e  

absolute  value o f . t h e  amplitude, w e  have 

The in t eg ra t ed .quan t i ty  I 

or thogonal i ty  (9) is, 

of t he  i n t e n s i t y  f o r  t h e  e n t i r e  image by t h e  0 

(5)For example, by expressing F,(X /ka) with f ( r , 9 )  from (11) and (2), and, ns 
on t he  o ther  hand, by assuming F(gns/ka $) of (8) can be  converted t o  the  

F m r i e r  transform i n  f ( r ,9 )  and subs t i t u t ing ,  y i e l d s  t h e  equation agree- 
ing  with the  former equation. 

7 



The number of sampling values included i n  a domain (area S) on an image 

is  the "number of degrees of freedom" of t he  domain. 

domain as a circle of radius  a,  and examine how many circles of rad ius  

L e t  us consider a 

. , ,  

, Ans/ka can be  included i n  t h i s  circle. When n = 0,  there  i s  one sampling 

value on the circle, whereas f o r  n # 0, the re  are two sampling values 

Fn(Xns/ka) and F ( A  /ka). The problem can b e  solved by examining t h e  -n ns  
zero d i s t r i b u t i o n  of t h e  Bessel function Jn(x) (n = 0,  1, 2, . . .) . 

8 

Although the i n t e g r a l  i n t e n s i t y  Io is equal  t o  the square of t h e  absolute  

value of each sampling value according t o  t h e  sampling theorem f o r  a square 

aperture ,  according to  t h a t  f o r  a c i r c u l a r  aper ture  i t  is equal t o  t h e  

square of t h e  absolute  sampling value mul t ip l ied  by the  coe f f i c i en t  

. 47~/k{J ' ( A  )Iz. n . ns  

When the  sampling value'  {Fn(Ans/ka)) is given, and when an amplitude 

d i s t r i b u t i o n  equal  toJ<-/ka) is given on a circle of radius  exp(in0) 

4a/Anska{Jn'(A )I2 on an objec t ,  t he  amplitude d i s t r i b u t i o n  of an image 

obtained by t h e  i n i t i a l  c i r c u l a r  aper ture  agrees with t h e  amplitude d i s t r i -  

bution of t h e  image before  performing t h e  sampling. 

common t o  the  case of sampling f o r - a  square aperture .  

n ns 
ns 

Such a property is 

The only d i f fe rence  
- i s  t h a t  it is  mul t ip l ied  by the  coe f f i c i en t  iT/Ansk&(Jn'(Ans)} 2 . 

As an example of t h e  above theorem, l e t  us consider t h e  cases when t h e  

amplitude d i s t r i b u t i o n  of  t h e  image F ( p , + )  = 1 and exp(in0). 

employing ( 8 )  and ( 9 ) ,  t h e  following p a r t i a l  f r a c t i o n  expansions of J o ( z ) ,  

J,(z) are obtained 

For each case 

These equations,  of course, .  can b e  proved d i r e c t l y .  

2.2 Degrees of Freedom of Images by Ci rcu lar  Aperture. 



Although an e x p l i c i t  descr ip t ion  regarding zeros can be found i n  

Chapter 15 of Watson's book, o r  i n  t h e  t a b l e  by Jahnke-Emde, a general  

expression cannot be found which holds  f o r  a l l  n and s. Hence, a t  t h e  

present ,  it is  not  poss ib le  t o  determine the  exact number of degrees of 

freedom from t h e  d i s t r i b u t i o n  of  zeros. L e t  us ,  therefore ,  u t i l i z e  the  

r e s u l t s  obtained from t h e  asymptotic expansion of J (x) can be expressed 

by the  following asymptotic equation 
n 

Hence,.the pos i t i ve -ze ro  X is, 
. . n s  

(Gray, mat hew,.^. 8 6 ) .  

and 1/2 n are p lo t t ed  on x and y coordinates , respect ively. .  It is conven- 

i e n t  t o  l ea rn  t h e  t rend of  zero d i s t r ibu t ion .  

approximation of (16) holds  f o r  zeros  of h igh-order  s. Although t h e  devia- 

t i o n  from (16) becomes l a r g e r  f o r  t h e  low order z e r o s , ' t h e  v a l i d i t y  of (16) 
i s  preserved. In  Figure 2, s i n c e  t h e  values of zeros are expressed by 

X 
. ns 

of po in ts  contained between.axes X,Y and t h e  l i n e  in t e r sec t ing  t h e  axes 

a t  45" at  (a/r ,O>,(O,  a/r). 

and examine the t o t a l  number of zeros smaller than a = kaPg. 

Based.on the exact values  of zeros,, X n s / r  - 1 / 2  n 

For a given degree n ,  t h e  

= a(*) the t o t a l  number of zeros  of Xns < a is equal t o  t h e  number 

For s impl i c i ty ,  l e t  us assume (20) (Figure 2) 

L e t  N be  t h e  

. pos i t i ve  in t ege r s  which s a t i s f y  

As is  evident from. the  f igu re ,  t h e  t o t a l  number of zeros contained between 

the axes and the. l i n e  i n t e r s e c t i n g  axes .X,Y respec t ive ly  at (N ,O) (0 ,N) at 
45" is  

9 



F=8a?S/rrP (17) 

Comparing the  exac t  h 

values,  t h e  r i g h t  number of t h e  degrees of freedom is  s l i g h t l y  l a r g e r  than 

the  approximate values from (17). 

of  Figure 2 and t h e  d i s t r i b u t i o n  of t h e  approximate n s  

L e t  us now consider t h e  degrees of freedom from a d i f f e r e n t  angle. 

As is w e l l  known, the degrees of freedom of a square aper ture  i s  F = 4a S/X 
where 2a is  the  s i d e  of t h e  aperture.  Comparing t h e  degrees of freedom of 

a square aper ture  which circumscribes and one t h a t  i n sc r ibes  a circle, the  

2 2  

. _. . .... . . . . . . . . . .  -- 
I a 

2 
6 .  

~ 

/""" 1iJy 

I 

* <  %. - 
' ' - 9  . 
\'.\e e . . e .  e ..................... 

t-. . .\,:.. ............ .................... .... .*, .*, .......... a5 ...................... 
u 
Lo 

0 I c 6 8 M 3  0 = - : k ' -  - - - - - 

Fig. 9 Showing the distribution of zeros 
As, of Bessel function Is(%) by blak 
points whose coordinates are given b y  
x=-Ams/u-n/2 and y=n/2, and the distribu- 
tion of approximated zeros of x(n/z+s) 
by circler. 

t 
L( 

Let  us consider now the  number of 

sampling values at  each sampling 

1 circle and obtain t h e  t o t a l  number 
b 

. -. ..... of sampling values  

circle of radius  a 

- I  

Pig. 1 Showing the sampling functloar 
Cnr(p,v) and CIs(c,(p) where AN and 21, are ' 
S-th zero of Bessel function I&) and 
Jl ( x )  respectively. 

F contained i n  a 
= kapO . 

_ _  . 

F- z' (1 12r) +*3 (1 + 2r) = N? + (N- 1) 2 
Y = O  I - 0  

L e t  P = 2NL and N = kdrpo/ns then F = 2(kap)'/nL. 

and np 

Subs t i tu t ing  k = 2n/X 

= S, w e  have 0 
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desired degrees.of.freedom F m u s t  be  i n  between, that is, 

The approximation- (17) also s a t i s f i e s  t h e  r e l a t i o n  i n  (18). 

consider a square which is inscr ibed  i n  the  above c i r c l e ,  and t h e  rec tangular  

aper tures  which f i t  between the  c i r c l e  and t h e  square. The add i t iona l  degrees 

of freedom a r i s i n g  from such a treatment w i l l  be  added t o  t h a t  from the  

inscr ibed  aper ture  2n S/A . 

We w i l l  now 

2 2  A t  t he  l i m i t  of approximation, w e  obtain.  

This is  equivalent  t o  determining the  area of a-circle  whose radius is  a. 

The r a t i o  between F from (19) and the  approximation from (17) is 

I f  one were t o  s tar t  with a more accura te  d i s t r i b u t i o n  of zeros ,  values 

c lose r  t o  those from (19) would probably b e  obtained. 

2 / 8  = 1.233. 

2.3. Sampling Theorem f o r  I n t e n s i t i e s  

Since i n t e n s i t y . i s  what we  d i r e c t l y  observe, t h e  sampling theorem f o r  

The i n t e n s i t y  d i s t r i b u t i o n  i s  more p r a c t i c a l  than t h a t  f o r  t h e  amplitude. 

i n t e n s i t y  d i s t r i b u t i o n  of images is given by (13) when i l luminated by co- 

herent  l i g h t .  When the  i l lumina t ion  i s  incoherent o r  semicoherent, t h e  

i n t e n s i t y  d i s t r i b u t i o n  of an image is equal t o  s u b s t i t u t i n g  the  mean values 

a t  each point  i n s t ead  of t h e  coe f f i c i en t  of (13) Fn(Ans/ka)Fm*(Amt/ka). We 

call  the  matrix composed of these  coe f f i c i en t s  as " in t ens i ty  matrix" 

The frequency.band of t h e . i n t e n s i t y  d i s t r i b u t i o n  I(p,$) is determined by t h e  

bandwidth o f '  I C  

(6) . 
(p,$)Cmta(p,$)), and not  by the  in te r fe rence  of l i g h t .  ns  

L e t  us consider t h e  bandwidth of Cns(p,$)Cmt*(p,$ ) I .  L e t  us express 

i n  rectangular  coordinates.  L e t  each be expressed by F(x,y)G(x,y) , 'ns' 'at* 

(6)See t h e  previous paper I63 and the paper which is being submitted. 
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and t h e  Fourier  transforms be 'f(u,v) ,, g(x,y). 

of t h e  product F(x,y)G(x,y) is  given by t h e  convolution (Faltung) i n t e g r a l  

between f (u,v) g(u,v) 

Then t h e  Fourier  transform 

according t o  Parseval ' s  theorem (Titchmarsh [7 ] ,  p. 51), where f(uo - u, 

uo - v) ,  g(u,v) assumes t h e  non-zero values wi th in  circles of rad ius  a whose 

centers  are at (u ) (O,O), respect ively.  It is always zero at  the  outside.  
2 , vo> is  completely zero at ~u + v t  2 2a. Hence, the  above i n t e g r a l  D(uo 

This i nd ica t e s  t h a t  t h e  frequency band of the product F(x,y) G(x,y) - t h a t  

is ,  of t h e  product Cns(p,$)Cmt,(p,$) - i s  201. 

osVo 
0 

The frequency band of t he  i n t e n s i t y  d i s t r i b u t i o n  of t h e  image given by 

the  aper ture  a is r e s t r i c t e d  wi th in  t h e  circle of radius  2 a  regardless  of 

the  i l lumina t ion  coherency. 

As ind ica ted  i n  Appendix 2 ,  t h e  Fourier  transform of the  product CnsCmt* 

can be obtained as a series of Bessel funct ions from a d i f f e r e n t  angle than 

the  above proof . ( 7 )  * 

- _. 

Since w e  now know t h a t - t h e  frequency band of t he  i n t e n s i t y  d i s t r i b u t i o n  
- 

is  r e s t r i c t e d  within a circle whose rad ius  is  twice t h e  aper ture  a, replacing 

a + 2 a  F -f I(p,$) i n  t h e  sampling theorems (7 ) ,  (8) f o r  the  amplitude i n  

Appendix 2 ,  the  sampling theorem f o r  t h e  i n t e n s i t y  can be d i r e c t l y  derived. 

Furthermore, s ince  t h e  i n t e n s i t y  I ( p  ,$) is alyays a pos i t i ve  in t ege r ,  regard- 

less of p , $, the  re la t ionship  

(7)By expressing Equation (20) i n  po la r  coordinates,  wr i t i ng  t h e  pup i l  
function i n  Fourier-Bessel expansion and in t eg ra t ing  by terms, t h e  series 
of t h e  response funct ion can be obtained which has t h e  sampling values of t h e  
amplitude as coef f ic ien ts .  Here, the  addi t ioh theorem of t h e  Bessel funct ion 
and Lommel i n t e g r a l  w i l l  be  used. 
reading .on Feb. 27. 

It w i l l  be supplemented during t h e  proof- 

1 2  



exists among the  sampling values. It follows t h a t ,  

where , 

Since the coe f f i c i en t s  of Fourier-Bessel expansion are given by (ll), 
the  Fourier  transform i ( r , e )  of t he  i n t e n s i t y  d i s t r i b u t i o n  can b e  obtained. 

Similar ly  t o  the  previous sec t ion ,  t he  sampling values of t h e  i n t e n s i t y  

contained i n  a c i r c l e  of area S is  , a  

_ _  __ 
Here, the  b i d w i d t h  ,.of ( t h e  i n t e n s i t y  i s  given by t h e  radius  2a. 

of the  coherency of i l luminat ion,  the  sampling values within t h e  area S are 

given by (25). 

Regardless 

Nevertheless,  the  above sampling values Ans and Bns cannot assume any 

a r b i t r a r y  value independently, unl ike the  case of amplitude; the  i n t e n s i t y  

' l ( p , $ )  given by (21) must always be p o s i t i v e  regardless  of t h e  value of 

p,$. There i s  a c e r t a i n  degree of redundancy among the  sampling values of 
the  i n t e n s i t y  d i s t r ibu t ion .  Since F ( i n t e n s i t y )  of Equation (25) does not  

13 



give independent sampling values, its meaning is r e s t r i c t e d  compared t o  F 

values f o r  t h e  amplitude d i s t r i b u t i o n  i n  t h e  previous sec t ion .  The redun- 

dancy i n  t h e  sampling values of t he  i n t e n s i t y  d i s t r i b u t i o n  is an advantage 

i n  numerical calculat ions.  This w i l l  become clear i n  the  following sec t ion .  

3. APPLICATION OF THE SAMPLING THEOREM 
TO NUMERICAL CALCULATIONS 

3.1 Airy Figure 

The above sampling theorem is a l i n e a r  i n t e rpo la t ion  method from t h e  

It is t h e  case where t h e  necessary standpoint of numerical calculat ions.  

sampling va lue  is a minimum. 

rest i s  mul t ip l ica t ion  and 'addition of C n s  
Fn(Ans/ka). 
Zernike, Nijboer and Nienhuis, which i s  discussed i n  t h e  next s ec t ion ,  only 

the  sampling value Fn(Ans/ka) need b e  determined, while  t h e  rest of t h e  

values  can b e  obtained by t h e  above in t e rpo la t ion  method; 

Once , t h e  t ab le  of {ens((),$) 1 is given, t he  

(p,$) f o r  t he  sampling values 

Hen'ce, i n  t h e  " l igh t  contour" numerical ca lcu la t ion  [3] of 

I n  order  t o  expect r igorous agreement of t h e  ca lcu la t ion  r e s u l t s  with 

the  amplitude before  sampling, an i n f i n i t e  number of sampling valuek is 

required,  as i s  evident from (8). I n  t h e  ac tua l  case, t h e  sampling number 

m u s t  b e  made f i n i t e .  

f i n i t e  number of sampling values. 

probably d i f f r a c t i o n  by a c i r c u l a r  aper ture  (Airy Figure) [8] f o r  which 

r igorously calculated values are known, and which is f r e e  of aber ra t ions  

and off- focusing . 
contain F ( A  

s ince  t h e  system has a x i a l  symmetry, I n  t h i s  case, the  pupi l  funct ion 

f ( r , e )  is f ( r , 0 )  = 1 f o r  r 5 a, and f ( r , e )  = 0 f o r  r > a. 

i n t o  (4) and performing in t eg ra t ion  u t i l i z i n g  the  asymptotic equation of 

the  Bessel function, t h e  well-known r e s u l t .  

L e t  us examine t h e  degree of  approximation wi th  a 

The one which satisfies t h e  ob jec t ive  is  

In  t h e  Airy Figure ca lcu la t ions ,  only t h e  terms which 

/ka),  Cos(p,$) (s = 1, 2, ...) i n  r 5 - a need be considered, 0 os 

Subs t i tu t ing  i t  - 

F ( z ) * ~ J ~ ( z ) l z  (26) 
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is obtained where z = kap. 
origin.  Applying t h e  sampling theorems f o r  t h e  amplitude (8) and (9) i n  

(26), w e  have 

It is mul t ip l ied  by 2 so t h a t  F(0) = 1 at the 

where As is the sth zero of Jo(z). Generally, l e t t i n g  t h e  pup i l  funct ion b e  

r exp(in0) i n  a c i r c u l a r  aper ture ,  w e  s imilar ly .  ob ta in  n 

This ca lcu la t ion  w i l l  be l e f t  f o r  t h e  reader.  

r e s u l t s  wi th  respect  t o  four  terms C 

a t  z = A1 as sampling values f o r  t h e  amplitude d i s t r i b u t i o n  given by t h e  

above (26). 

For a rigorous ca lcu la t ion  

Figure .3 shows t h e  ca lcu la t ion  

Co2, Cos,  Co4 taking t h e  amplitudes 01 

The amplitude a t  t h e  o r i g i n  i s  0.992 where i t  should b e  1. 

I n  order t o  examine t h e  degree of approximation a t  t h e  o r i g i n ,  s must be 

found, f o r  which 1 / A s 2  f a l l s  below the  required accuracy using t h e  asymptotic 

Equation (16) f o r  t h e  value of zero As contained i n  (28). I n  order  t o  insure  

a fourth place accuracy i n  t h e  amplitude value a t  t h e  o r ig in ,  t h e  sth term 

f o r  which As2 - > 10 must b e  included i n  t h e  calculat ion.  

s 

necessary. The in t e rpo la t ion  f o r  the amplitude coverges a t  approximately 

s . For a higher prec is ion ,  therefore ,  many terms are needed. Hence, 

although the  sampling value f o r  t h e  amplitude is  the  sample of t h e  minimum 

necessary number, t h e  convergence i n  t h e  numerical ca lcu la t ion  is  not very 

good. 

4 According t o  (16), 
2 10 /IT - t h a t  is, sampling values up t o  approximately 30 terms are' 

-2 

The s i t u a t i o n  is much b e t t e r  wi th  t h e  sampling theorem of 2.3. f o r  t he  

i n t e n s i t y  d i s t r ibu t ion .  As a r e s u l t  of  t he  approximation ca lcu la t ion  when 
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t h e  sampling values are given at .four 

poin ts  z = X1/2,X2/2, X3/2, X 4 / Z ,  a 

3-place accuracy ( is obtained 

wi th in  the  minimum b l u r  circle. The 

a i f f e rence  between t h e  co r rec t  value is 
*J .-. b, ind iscern ib le .  L e t  us compare with the  

- - - - __ - _ _  __ - 

1 1 

I 

I 

-7*b . 
numerical values. 

- - -  - 
Pig. S The amplitude of the Airy Bgure at 

&harp focus is shown by full line and the 
amplitude calculated by bampling theorem 
from four sampler 8t A,i,i=l,i!,3,4 by _.______ 

4 poin t  dotted line. __ __-_--. 
, 

~ _- _I 

1: (ZJl(z)/z)* approximation 
Almost 1/1000 accuracy is -obtainable.  0 .  l.oo00 1.OOO6 

L e t  us  examine the  degree of approxi- 2.0 0.3326 0.3330 
1.0 0.7746 0.7i56 

mation a t  t h e  o r ig in  I(0) , and the  3.0 0.0511 
3.0 . 0.0011 

I 
0.0510 
0.0018 

number of t h e  required terms. The 5.0 0.0172 0.0185 

i n t e n s i t y  a t  t he  o r i g i n  i s ,  
0.0085 0.0115 

. .  
6.0 

_-___ - 
-5 $-I ~{~JIQ~/~)/~~)~/AJ,(A,) (29 1 

/- 
Applying the asymptotic equation f o r  zeros  as before,  the  magnitude of t h e  

sth term is about s-7/2e 

necessary. 

which w e  can obtain wi th  good accuracy, t h e  sampling theorem f o r  t he  i n t e n s i t y  

is very useful.  

of sampldngs is due t o  t h e  redundancy i n  t h e  sampling values as discussed i n  

2.3. 

f o r  t h e  amplitude discussed earlier becomes 0.8504. 
s i t y  sampling which gives 1.0006, t he  accuracy i s  bad. 

sampling theorem f o r  the i n t e n s i t y ,  many samplings are necessary f o r  a 

ce r t a in  accuracy. 

For accuracys approximately 14 terms are 

Since what w e  almost always need i s  t h e  i n t e n s i t y  d i s t r i b u t i o n  

The high  degree of accuracy obtainable  f o r  t h e  same number 

The i n t e n s i t y  a t  the o r ig in  obtained from t h e  4-point approximation 

Compared t o  t h e  inten- 

According t o  t h e  
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L e t  us obtain t h e  response funct ion f o r  a circular aper ture  - t h a t  is, 
2 the Fourier  transform of’  c2J1(z)/z) As i t  is w e l l  known 191, 

t he  rigorous equation f o r  t h e  response funct ion f o r  t h i s  case is given by 

(see Appendix 3 ) ,  

from (24). 

Figure 4 shows t h e  result of approximation of  t h e  response funct ion obtained 

with four  i n t e n s i t y  sampling values. According t o  t h e  f igure ,  although it 

shows good agreement around r = 2 with t h e  r igorous so lu t ion ,  the e r r o r  is 

l a rge  around r = 0. 

t h e  response function 5n’the v i c i n i t y  of t h e  o r ig in  .are af fec ted  even by t h e  

d i s t a n t  values of t h e  d i f f r a c t i o n  f igure .  

It i . u n d e r s t a n d a b l e ,  since, i n  general ,  t he  values of 

L e t  us examine haw much t h e  approx- 

imation values improve by increas ing  the  sampling values: 

4 poin ts  0.917. 
6 poin ts  0.941 
8 poin ts  0.966 

L e t  us examine the degree‘of approximation as  before.  

The value of the response funct ion a t  t h e  o r i g i n  is, 

Subs t i tu t ing  the asymptotic value for,  As as previously,  t h e  magnitude of t h e  

sth term is approximately so2. 

theorem f o r  amplitudes, meaning t h a t  t h e  convergence is slow at t h e  or ig in .  

It is premature, however, t o  conclude from such a f a c t  t h a t  i t  is imprac t ica l  . 
t o  obtain a response function from the  sampling theorem. 

This i s  same as t h e  case of t h e  sampling 

The value of the  

. (8)The value obtained from (24) is divided by 2 i n  order  t o  have agreement 
with t h e  response funct ion of (30) which is  normalized. 
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response funct ion at t h e  o r ig in  can be 

obtained comparatively e a s i l y  by an 
a n a l y t i c a l  method. For example, one 

merely needs t o  consider t h e  i n t e g r a l  

l e t t i n g  g = f*  and uo,vo = 0 i n  (20). 

Since D ( 0 )  is equal t o  the  i n t e g r a l  of 

t h e  d i f f r a c t i o n  f igu re  by supplying the 

i n t e n s i t y  d i s t r i b u t i o n  which i s  within 

I our  accuracy range, t h e  approximation ' .  
0 value of t h e  response funct ion from t h e  
021 . * \ *  I 

.L' 04 G6 68 1.0 __ - - __ - -  
sampling values  w i l l  probably b e  satis- 

factory.  

Fjg.-4 The response function of a circular , 
'aperture without both aberration and 
focussing is sbown by full line. and the'' 
response function calculated from four 
samples of intensity at &/2, i==l,2,3,4 by 
dotted line. I 

3.2 The General C a s e  

Needless t o  say, t h e  previous discussions per ta ined t o  an image by an 
i d e a l  circular aper ture  when t h e  ob jec t  is  a point  l i g h t  source. Let us 

give a preliminary discussion i n  applying t h e  sampling theorem t o  an image 

formed by a system wi th  aber ra t ions  and off-focusing f o r  t he  case when t h e  

objec t  i s  a poin t  source,  o r  when the  objec t  had an a r b i t r a r y  amplitude dis- 

t r ibu t ion .  I n  general ,  t he  pup i l  function [3] f o r  t h e  system with aberra- 

t ions  and off-focusing i s  

where p is a parameter which ind ica t e s  off-focusing, and Y ( r , e )  i s  the  wave- 
f ron t  aberration. 

r, whereas i n  the non-spherical aberrat ions,  such as astigmatism o r  coma, i t  

I n  sphe r i ca l  aber ra t ions ,  V(r,e) is only a funct ion of 

is a function of r,e. A s  c l a r i f i e d  by Nijboer,  V ( r , e )  is  normally expanded 

by c i r c l e  polynomials 13,101, and each term of t h e  series has a phys ica l  

meaning. 
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For an objec t  which has an a r b i t r a r y  amplitude d i s t r i b u t i o n ,  i f  g(r ,e) 

is t h e  Fourier  transform of t h e  amplitude d i s t r i b u t i o n ,  t h e  Fourier  spectrum 

of t h e  waves at  t h e  exit pup i l  is  equal  t o  t h e  product of t h e  above f(r,O> 

and g(r,O). 
In  order  t o  'apply t h e  sampling theorems t o  these  images, e i t h e r  t he  coeffi-  

c i e n t s  (2) of the Fourier-Bessel expansion of t h e  given pup i l  funct ion f ( r , e )  , 
o r  t h e  sampling values of t h e  image f r o n t  must be determined. 

t h e  a n a l y t i c a l  ca l cu la t ion  of ( 2 )  i s  not  easy. As (2) w a s  s tud ied  long t i m e  

ago by Lome1 only f o r  t he  off-focus case, sometimes i t  is  solved using the  

Lommel functions U and V (Gray-Mathews , Chapter 14). 

Each one has  a frequency band determined by t h e  aper ture  a. 

Generally,  

When t h e  aberrat ions are not  too l a rge ,  (32) can be  expanded by the  

circle polynomials as t r e a t e d  by Zemike, Nijboer and Nienhuis. Sampling 

values of 2 can be obtained e i t h e r  from t h e  amplitude of the  i n t e n s i t y  of the 

d i f f r a c t i o n  waves of Nijboer,  et al. 

The ca lcu la t ion  of Nijboer,  e t  al. e s s e n t i a l l y  is comprised of expanding 

f ( r ,e)  by t h e  circle polynomials and performing i ts  Fourier  transform. . 
Since t h e  following general  r e l a t i o n  exists between t h e  expansion of f ( r , e )  

by the circle polynomial and t h e  Fourier-Bessel expansion, the  pup i l  funct ion 

can be  expanded by the circle polynomials , which can then b e  subjected t o  

t h e  Fourier-Bessel expansion . (9 1 

Expansion by t h e  circle polynomials is easier than t h a t  by t h e  Fourier- 

Bessel expansion. As t h e  former i s  by a polynomial expansion, t h e  f i n a l  

expansion equation can b e  obtained by elementary ca lcu la t ions  by applying 

t h e  asymptotic equation between the  polynomial equations. 

I f  t h e  pup i l  function f ( r , e )  is given i n s i d e  t h e  u n i t  circle, general ly  

(9)Explanations are not  given a t  t h i s  point  i n  the  o r i g i n a l  paper by Zernik, 
Nijboer, and Nienhuis. This probably is  a new problem which arose i n  con- 
junct ion with t h e  sampling theorem. 
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the p u p i l  funct ion is expanded by a circle polynomial sR:+sb(r)* as follows: 

Where the  expansion coe f f i c i en t  Am,&2k,, Bm,mc2k is derived from t h e  ortho- 

gonal r e l a t i o n  between f R 3  . 

The orthogonal r e l a t ion ;  

is applied. 

i n  f ( r , 0 )  is expanded i n  series. 

V(r,O) i n  circle polynomials l i k e  Zernike, e t  al. t h e r e  w i l l  b e  many poly- 

nomial products. Using the  following asymptotic equations,  l e t  us proceed 

so t h a t  R:(r)  appears i n  t h e  expanded terms which contain cos me and s i n  me. 

Actually,  ins tead  of i n t eg ra t ing  ( 3 4 ) ,  t h e  exponential  funct ion 
2 I n  t h i s  case, by expressing exp(ipr ) and 

This only appl ies  when f ( r y e )  can b e  approximated by t h e  f i r s t  terms of t h e  

series. When t h e  deviat ion is  too l a rge ,  i t  becomes complicated. 

The Fourier  transform of an expansion l i k e  ( 3 3 )  obtained by t h e  above 

procedure gives t h e  amplitude d i s t r i b u t i o n  of t h e  image f ront .  

r e s u l t  obtained by Zernike, .Nijboer, and Nienhuis. 

This is  t h e  

F i r s t ,  l e t  us i n t e g r a t e  with respect  t o  0 the i n t e g r a l  
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-&l[R:+: ,  ('1 cos#@ sin I 
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Xexp[ikprcos(d-q)]rdrdd 

- -  
which i s  required f o r  t h e  Fourier  transform, and obtain ' ( Q r n ~ ~ ~ v J = ( b r )  

i n t eg ra t ion  with respect  t o  r is obtained by t h e  following i n t e g r a l  given by 

Zernike, 

The 

Now l e t  us apply the  sainpling theorem 2 t o  (38). Sampling values  are 

obtained on t h e  c i r c l e  of rad ius  kp = X [zero of . (X :J (z))] f o r  the  terms 

including s i n  m4, cos m4. 
m s  m 8 m  

where t h e  p o s i t i v e  in t ege r s  s = 1, 2 ,  3 ,  ... are taken. 

The coe f f i c i en t s  K of the Fourier-Bessel expansion are obtained by ns  
applying (11) t o  (39). 
as 

By r e s t r i c t i n g  the  sampling values with cos m4, s i n  rn6 

The sampling values are expressed by 
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Let us now consider t h e  r e l a t i o n  between t h e  Fourier-Bessel expansion 

(1) and the circle polynomial expansion (33). The key l ies  i n  t h e  in t eg ra t ion  

(37). The basic funct ion exp(in0)J (A r) of  t h e  Fourier-Bessel expansion is n n s  
expanded by the  cirele polynomial. Otherwise, i t  is regarded as an equation 

which gives the  expansion coe f f i c i en t s  when t h e  circle polynomial es expanded 

by t h e  Fourier-Bessel expansion. Both expansions are re l a t ed  by 

Hence, Fourier-BesseJ--expansion is obtained by subs t i t u t ing  (42) i n t o  

(33). The reverse a l s o  holds.  The expansion coe f f i c i en t  K obtained i n  

th i s  way obviously agrees with that qbtained from the sampling value (39). 

/ 
ns 

I n t e n s i t y  d i s t r i b u t i o n  I ( p , $ )  is given by the  product ,F(p,$) from (38) e 

As w a s  repeatedly s t a t e d ,  i t  is more p rac t i cax  t o  apply sampling theorems 

f o r  t h e  i n t e n s i t y  d i s t r ibu t ion .  General equations f o r  t h e  i n t e n s i t y  d i s t r i -  

but ion are: 
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Hence, the sampling value f o r  the i n t e n s i t y  d i s t r i b u t i o n  i s  equal  t o  the 

value of Jmt.2k+l <XIJn+2 +1 (A)/A2 of  Jm-,(z) and J,,(z) times t h e  corres- 

ponding coe f f i c i en t s  of ( 4 3 ' ) .  

coe f f i c i en t s  from (11) t o  t h e i r  sampling values is  equal  t o  t h e  expansion 

coe f f i c i en t s  when t h e  Fourier  transform of t h e  i n t e n s i t y  d i s t r i b u t i o n  is  

expressed by t h e  Fourier transform. I n  such a manner,the response funct ion 

of t h e  pup i l  function with a r b i t r a r y  aber ra t ions  i s  obtained numerically by 

t h e  Fourier-Bessel expansion which has t h e  sampling values of t h e  i n t e n s i t y  

d i s t r i b u t i o n  as coe f f i c i en t s .  

The quant i ty  obtained by multiplying t h e  

When (43) '  is d i r e c t l y  transformed, an a n a l y t i c  expression of t h e  

' response funct ion i s  obtained. By in t eg ra t ion  with respec t  t o  t h e  angular 
m-n va r i ab le ,  w e  ob ta in  an expression which i s  replaced by ( i )  cos (m-n)0 

J ( p r )  , (i)& cos (mtn) 0 J&,(pr) and s i n  (m-n) 0 ,  s i n  (&)e. I n  i n f i n i t e  

i n t eg ra t ion  with respec t  t o  p ,  general ly  t h e  following two types of i n t e g r a l s  

emerge : 

m-n 

These i n t e g r a t s  can b e  evaluated by the  method described i n  Appendix 3. 

Since a r epor t  per ta in ing  t o  t h e  a n a l y t i c a l  equations of such response 

functions cannot b e  found,. they w e r e  included i n  t h e  Appendix. 

. 4 .  CONCLUSION 

The appl ica t ion  of the-above sampling theorem f o r  a c i r c u l a r  aper ture  t o  

experimental da t a  requi res  a separa te  discussion. When a -d i f f r ac t ion  image 

which has a point  l i g h t  source as an ob jec t  is experimentally given, and i f  

t h e  sampling value given by 2 is in t eg ra t ed  on i t s  sampling circle and 

determined experimentally,  t h e  p a r t s  which have n-fold symmetry wi th  respec t  

t o  the axis can be obtained separa te ly .  Also, response functions a r i s i n g  
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from such p a r t s .  can.be e a s i l y  .derived.. This is an i nd ica t ion  that sampling 

theorems are a l s o  useful f o r .  consolidating experimental data. 

me o the r  important appl ica t ion  of the above sampling theorem is  t o  

extend t h e  one-dimensional " in tens i ty  matrix" discussed i n  t h e  preceding 

paper [6] t o  a two-dimensional image by a circular aperture .  A repor t  has  

been submitted per ta in ing  t o  this problem, I n  this  case, the.element of 

t h e  transformation matrix, which represents  t he  transformation of t h e  

i n t e n s i t y  matrix by passing through a c i r c u l a r  ape r tu re  with aber ra t ions  , 
can be obtained as an appl ica t ion  of t h e  sampling theorem f o r  a c i r c u l a r  

aperture.  It has the same funct ion as the response func t ion- in  discussing 

the formation of an image. The element of t h i s  transformation matrix i s  a 

quant i ty  which ind ica tes  how a sampling funct ion C 

appears on t h e  sampling value of degree n and order  s on t h e  image. 

(p,$) on t h e  objec t  n s  

The case where. t he  ob jec t  is a poin t  l i g h t  source w a s  mainly discussed 

i n  3. 
an a rb i t r a ry  span, sampling corresponding'to an extremely l a rge  degree n 

and order  s i s  required. Since a rigorous treatment of a l l  such sampling 

functions Cns (p ,$I) is  formidable, asymptotic equations of t h e  Bessel funct ion 

of the form (15) and (16) are employed. 

I n  applying t h e  sampling theorem t o  an image of an objec t  which has  

As evident from the discussion, several new problems on Bessel funct ions 

A c ross  check on t h e  problems by those who are i n t e r e s t e d  w i l l .  were created.  

b e  appreciated. 

I am g r a t e f u l  t o  Professors Hidetoshi Takahashi, W r o s h i  Kubota, Goro 

Kuwabara and Iwao Okura of University of Tokyo f o r  t h e  valuable discussions.  
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APPENDIX 1 
Calculat ions on Cns (p , $) 

.. I 

! 

J 
0 

x expiin8 i i k p f  cos(e -u)]fdfde 

In t eg ra t ion  wi th  respect  t o  angular va r i ab le  0 is obtained by t h e  formula 

from Watson (p. 20). 

The in t eg ra t ion ,  

is obtained by t h e  Lommel i n t e g r a l  (Gray, Mathews , p. 6 9 ) ,  

where,, X t h e  zero of Jn(x) is u t i l i z e d .  n s  

Now, t h e  orthogonal r e l a t i o n  ( 7 )  of Cns(p,$) is zero when in t eg ra t ing  

fieri n = m, by represent ing C (p,$) i n  t h e  with respect t o  o: when n # m. 

i n t e g r a l  of (1.2), it re turns  t o  t h e  i n t e g r a l  
n s  

Here, by the  Fourier-Bessel i n t e g r a l  (Gray Mathews, p. 96-97) ,  w e  obtain 
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(1.4) is solved by the Lommel integral  (1 .3) .  However, when, X - 1-1, we apply 
. 

where the orthogonal relat ion is proved as a spec ia l  case described i n  Appendix 
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APPENDIX 2 

Fourier  Transform of Cns(p,$)Cmt*(p,$) 

(2.1) /112 

where t h e  constant A is 

By separa t ing  i n t o  p a r t i a l  f r ac t ions ,  t h e  i n t e g r a l  of (2.1) can b e  represented 

as t h e  d i f fe rence  of two i n t e g r a l s .  

where 

(2.3) 
- _ _  .. 

L-l ( V U :  1) -J?a(x) JI ( x )  Ja- - l  ( x r / a ) z q  x d x  

When n = m and s = t ,  w e  have 

Dar (r, @;daI, Ins) = AFl(r, 8 )  (2 4) 

(2 5 )  - - _  
xdx 

Fa (I; 8)  =L 'ir. (I) I 'Jd - p): 

Thus, i t  is necessary t o  determine the  two i n f i n i t e  i n t e g r a l s ,  (2.3) and (2.5). 

Direct so lu t ions  t o  these  are not  l i s t e d  i n  reference books. Since the in t e -  

g ra l s  have a d e f i n i t e  physical  s ign i f icance ,  as expected the  so lu t ion  w a s  

found by the  following procedure. By expressing the  product of Bessel funct ions 

29 



Jn(x)Jm(x) by an i n t e g r a l  which includes Jn - mp and changing the  o rde r  of 

i n t eg ra t ion  it can b e  expressed as an i n f i n i t e  i n t e g r a l  of t he  product of 

two Bessel funct ions of t h e  same order.  Since the  l a t te r  can b e  determined 

by the  Hankel i n t e g r a l ,  t he  so lu t ion  can be  derived. 

According t o  Watson, § 3.43 (page 150) , 

Let  us s u b s t i t u t e  t h i s  i n t o  (2.3), and change the order  of in tegra t ion .  

The Hankel i n t e g r a l  [Watson § 13.53 (p. 429)J can b e  solved as a Hankel 

funct ion Hn") of t he  lst kind 

Th i n t e g r a l s  ontained i n  (2.8) can be determined as ries by Garf's 

generalized equation (Watson, p. 361) of t he  addi t ion  theorem of Neumann's 

formula 

By s u b s t i t u t i n g  t h i s  result i n t o  (2.8), w e  have 
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(2.13). 

This agrees with the  r e s u l t  proved by using the Four ie rBesse l  i n t eg ra l  i n  

Appendix 1. 

I f  w e  f i r s t  determine Inm(O,,X) with (2.12), then by (2.8) the  in t eg ra l  

of (2.13) becomes 

Nevertheless, the coeff ic ients  of the  series (2.10) are a l l  zero except 

i n  the  case when k = f n. - 

Hence, 

where the i n t e g r a l  (2.13) i s  determined by 

I 
(Watson § 3.63, page 77) 

2 the f i r s t  result 1/(2X ) is obtained. 
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APPENDIX 3 

Analy t ica l  Equation of Response Function 

The response funct ion of a c i r c u l a r  aper ture  with no aber ra t ion  and of f -  

focusing ' (Airy f igu re )  , 

With Gegenbauer formula (Watson, p. 367) let  us replace'  {2J1(x)/x)2, t h a t  is 

Subs t i t u t ing  this i n t o  (3 .1)  and changing the  order  of i n t eg ra t ion ,  we have 

The i n  i n i t e  i n t e g r a l  contained he re  can be  solved as follows. 

406, Magnus-Oberhettinger, p. 50) ; 
(Watson, p. 

L e t  us s u b s t i t u t e  t h i s  i n t o  (3 .3)  

L e t  us now consider t h e  response funct ion f o r  the-case  with s p h e r i c a l  

In  t h i s  case. i t  is r e l a t i v e l y  simple, s ince  aberrat ions and off-focusing. 

('"The d i f fe rence  of 2 i n  t h e  coe f f i c i en t  from t h e  t e x t  (30) arises from the  
normalization, D(0)  = 1. Normally, t h i s  i n t e g r a l  is obtained from t h e  convo- 
l u t i o n  i n t e g r a l  193. It can also be  solved by (3.12). 
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i t  is  ax ia l ly  symmetric and there  is no term with cos and sin i n  ( 4 3 ' ) ,  that 

i s  

For the  in t eg ra l ,  we  have 

When k = 1 using Gegenbauer's formula [Watson, p. 367. (17) J with respect t o  

' {J2k+l(x)/x12 I 

Substi tuting t h i s  i n t o  ( 3 . 7 )  and using ' . ( 3 .4 )  

where Gegenbauer's polynomial Cgkl  can be  expressed by a s i n  function as 

follows 

By subs t i tu t ing .  t h i s  i n to .  (3.9), Ikk(r) can b e  obtained-by an-el-entary 

method. 

When k = 1, the  product J2k+l(x)J2i+l(x) is by (2.6) o r  by the following 

in t eg ra l  

(2.6') 

From this, 
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(3.11) 

o r  

(3.11') ' 

Expressing k+Z o r  k-2 by n ,  t he  necessary i n t e g r a l  is 

When r and 2 cos 8 are real. numbers and 2n > 0, the i n t e g r a l  can b e  solved as 

a s p e c i a l  case by Sonine, Schofhe i t l in ' s  formula (Magnus-Oberhettinger, p. 49). 

( i )  r<2cos8 
1 A=--- tFI(*, -%l; P) 

(ii) r22cos o 2- r/t  cos 0 
A=O 

2 where 2Fl(nm -n;l;CZ) ) is a polynomial up t o  (2)2* term as follows 

t i ,  (n, - n; 1; ( Z ) 9  
n'(n2- 1) z,-n*(nz-l)(#*-P) ' ;o+ (2!)* (3!)* = 1 - n'Z'+ 

......+(-I) a 2- n?(nf -1) .-. {nz - (n - I):) 
(n!)* 

2- r/2 cos 0 '-.E%: 

Subs t i tu t ing  (3.12) and (3.13) i n t o  (3.11) o r  (3.11'), we have 

o r  it becomes t h e  same form with respect  t o  kyZ. 

(3.12) 

(3.13) 

(3.14) 

2 This i n t e g r a l  can be solved as a polynomical i n  r , -A t h e  coef f ic ien  

can be solved simply.as a trigonometric i n t e g r a l .  As evident  from t h e  above, 

when k = Z(>O) by changing it i n t o  an i n t e g r a l  containing Jgk(2x cos 8) using 



(2.6*), (3.12) can b e  used, and can be solved with t h e  Sonine-Schafheithlin 

formula without r e s o r t i n g  t o  Gegenbauer's formula. 

For the  case of non-spherical aber ra t ion ,  i t  can b e  solved s i m i l a r l y  

using (2.6') and Sonine-Schafheitlin's formula. 

Thus, we have th ree  ways t o  determine t h e  response function: 

- - - - - - __ -_- 
( i )  By t h e  sampling theorem using the Fourier-Bessel funct ion (12). 

( i i )  From the  sampling coe f f i c i en t s  f o r  amplitude, u t i l i z i n g  t h e  

Fourier  transform of C C of Appendix 2. ns m t *  

( i i i )  By t h e  a n a l y t i c a l  method from the  i n t e n s i t y  d i s t r i b u t i o n  of 

Appendix 3. 

For the  numerical ca l cu la t ions ,  method. (i) is most p rac t i ca l .  

sampling value,  the answer can b e  obtained from the  known t a b l e  of Bessel 

functions.  The disadvantage is, as s t a t e d  i n  31, the co r rec t  value i n  t h e  

v i c i n i t y  of r = 0 c&not b e  obtained by t h i s  method, whereas with method (iii) 

i t  is easy t o  obtain values a t  r = 0. Hence, methods ( i )  and ( i i i )  comple- 

ment each other .  . Regarding method ( i i )  , when t h e  i n t e n s i t y  d i s t r i b u t i o n  i s  

given as an i n t e n s i t y  matrix,  the  Fourier transform of the  i n t e n s i t y  d i s t r i -  

bution can b e  obtained by multiplying t h e  series so lu t ion  of Appendix 2 t o  

the  matrix elements. 

t o  obtain t h e  so lu t ion .  

Given a 

In t h i s  case, a l so ,  i t  is  probably convenient t o  use ( i )  

Translated f o r  N a t i o n a L 6 u t i c s  and Space Administration under cont rac t  
No. NASw 2035, by SCITRAN, P.' 0. Box 5456 ,  Santa Barbara, Cal i forn ia ,  93108. 
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